De Gruyter Open

From December 2015 Agricultura journal will be published in partnership with De Gruyter Open (, the world's second largest publisher of Open Access academic content, and part of the De Gruyter group which has over 260 years of publishing history. De Gruyter Open closely cooperates with the majority of abstracting and indexing services, universities and libraries, providing a wide availability of journal's content and increasing its visibility. Agricultura's full-text articles will be found also at the new address on the De Gruyter Open's platform in following weeks.

Publishing support

Publishing of the journal Agricultura is financially supported by Slovenian Research Agency.

Izdajanje revije Agricultura je finančno podprto s strani Javne agencije za raziskovalno dejavnost Republike Slovenije.

Our Profile

The journal AGRICULTURA (A) publishes scientific works from the following fields: animal science, plant production, farm mechanisation, land management, agricultural economics, ecology, biotechnology, microbiology
ISSN 1581-5439


pp. 21-32


A rapid microbial detection in different biological and environmental material is a key of preventing several foodborne diseases. By implementing nanotechnology into food safety sector, a great step towards successful, reliable and sensible detection methods of foodborne pathogens has been achieved. Therefore, the aim of this review was to illustrate some of the principal functions of nanotechnology-based techniques, used for microbial detection in the last few years. Regarding consumer's health, the review also discusses the question of safety, concerning human exposure to nanomaterials (NMs). Due to their different composition-unique properties, such as greater penetrability, reactivity and high surface to volume ratio, NMs have been coupled to several biomolecules and integrated in special system devices, resulting in improvement of sensitivity in transmitting biological signal informations in a shorter time. Among all the NMs, gold, magnetic and fluorescent nanoparticles (NPs) have been widely used, also in microbial diagnosis. Despite the success of linking nanotechnology to detection of foodborne pathogens, the exposure to various NMs could also be a matter of potential risk to human health, although conclusions still need to be definitely proven.

Key words: nanotechnology, food safety, nanoparticles, diagnosis, foodborne pathogens


Nanotehnologija na področju varnosti hrane in ocenjevanja kakovosti: potencialnost nanodelcev v diagnostiki prehranskih povzročiteljev bolezni

Ključ do preprečevanja številnih bolezni, povzročenih z uživanjem kontaminirane hrane, sloni na hitrem odkrivanju mikrobov v različnem biološkem in okoljskem materialu. Uporaba nanotehnologije na področju varnosti hrane predstavlja velik korak v smeri uspešnih, zanesljivih in občutljivih metod za odkrivanje prehranskih povzročiteljev bolezni. Cilj preglednega članka je predstaviti nekatere glavne značilnosti nanotehnološko-baziranih tehnik, uporabljenih za odkrivanje mikrobov v zadnjih letih. Prav tako se pregledni članek dotakne vprašanja o varnosti uporabe nanomaterialov, predvsem z vidika potrošnikovega zdravja. Nanomateriali se, zaradi njihove različne sestave, ponašajo z edinstvenimi lastnostmi kot so večja prepustnost in prodornost, odzivnost ter večje razmerje površine v odvisnosti od volumna. Njihova sposobnost vezave na številne biomolekule in integriranje v posebne sistemske naprave pripomore k izboljšanju občutljivosti prenašanja bioloških signalnih informacij v krajšem časovnem intervalu. Široka uporaba zlatih, magnetnih in fluorescentnih nanodelcev je znana tudi v mikrobni diagnostiki. Kljub uspehu povezovanja nanotehnologije z odkrivanjem prehranskih povzročiteljev bolezni, je zaključek o tem ali izpostavljenost nanomaterialom pomeni potencialno tveganje za zdravje ljudi, potrebno še dokazati.

Ključne besede: nanotehnologija, varnost hrane, nanodelci, diagnostika, prehranski povzročitelji bolezni


1. Agasti SS, Rana S, Park M-H, Kim CK, You C-C, Rotello VM. Nanoparticles for detection and diagnosis. Adv. Drug Deliv. Rev. 2010; 62:316–28.
2. Ali MA. Detection of E.coli O157:H7 in feed samples using gold nanoparticles sensor. Int.J.Curr.Microbiol. App.Sci. 2014;697–708.
3. Amini SM, Gilaki M, Karchani M. Safety of nanotechnology in food industries. Electron. physician.2014;6:962–8.
4. Arora P, Sindhu A, Dilbaghi N, Chaudhury A. Biosensors as innovative tools for the detection of food borne pathogens. Biosens. Bioelectron. 2011;28:1–12.
5. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 2011;45:283–7.
6. Berry CC, Curtis ASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys.2003;36:R198–R206.
7. Billington C, Hudson JA, D’Sa E. Prevention of bacterial foodborne disease using nanobiotechnology. Nanotechnol. Sci. Appl. 2014;7:73–83.
8. Boehm DA, Gottlieb PA, Hua SZ. On-chip microfluidic biosensor for bacterial detection and identifcation. Sensors Actuators B Chem. 2007;126:508–14.
9. Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum. Vaccin. Immunother. 2014;10:321–32.
10. Borm PJA, Kreyling W. Toxicological hazards of inhaled nanoparticles--potential implications for drug delivery. J. Nanosci. Nanotechnol. 2004;4:521–31.
11. Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ, Hussain SM. Crystal structure mediates mode of cell death in TiO 2 nanotoxicity. J. Nanoparticle Res. 2008;11:1361–74.
12. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 2006;40:4374–81.
13. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2008;25:241–58.
14. Chen Z, Mauk MG, Wang J, Abrams WR, Corstjens PL, Niedbala RS, Malamud D, Bau HH. A microfluidic system for saliva-based detection of infectious diseases. Ann. N.Y. Acad. Sci. 2007;1098:429–36.
15. Chung MS, Kim CM, Ha SD. Detection and enumeration of microorganisms in ready-to-eat foods, ready-tocook foods and fresh-cut produce in Korea. J. Food Saf. 2010;30:480–89.
16. Cui S, Zhou S, Chen C, Qi T, Zhang C, Oh J.. A simple and rapid immunochromatographic strip test for detecting antibody to porcine reproductive and respiratory syndrome virus. J. Virol. Methods.2008;152:38–42.
17. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, João R, Pedro VB. Noble metal nanoparticles for biosensing applications. Sensors (Basel). 2012;12:1657– 87.
18. Dutse SW, Yusof NA. Microfluidics-based lab-on-chip systems in DNA-based biosensing: an overview. Sensors (Basel). 2011;11:5754–68.
19. Gabig-Ciminska M. Developing nucleic acid-based electrical detection systems. Microb. Cell Fact. 2006;5:9.
20. Geszke-Moritz M, Moritz M. Quantum dots as versatile probes in medical sciences: synthesis, modification and properties. Mater. Sci. Eng. C. Mater. Biol. Appl. 2013;33:1008–21.
21. Gill P, Alvandi A-H, Abdul-Tehrani H, Sadeghizadeh M. Colorimetric detection of Helicobacter pylori DNA using isothermal helicase-dependent amplifcation and gold nanoparticle probes. Diagn. Microbiol. Infect. Dis. 2008;62:119–24.
22. Giri S, Sykes EA, Jennings TL, Chan WCW. Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes. ACS Nano. 2011;5:1580–7.
23. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.
24. Gupta AK, Wells S. Surface-Modifed Superparamagnetic Nanoparticles for Drug Delivery: Preparation, Characterization, and Cytotoxicity Studies. IEEE Trans. Nanobioscience. 2004;3:66–73.
25. Hahn MA, Tabb JS, Krauss TD. Detection of single bacterial pathogens with semiconductor quantum dots. Anal. Chem. 2005;77:4861–9.
26. Halfpenny KC, Wright DW. Nanoparticle detection of respiratory infection. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:277–90.
27. He Y, Kang Z-H, Li Q-S, Tsang CHA, Fan C-H, Lee S-T. Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew. Chem. Int. Ed. Engl. 2009;48:128–32.
28. Hötzer B, Medintz IL, Hildebrandt N. Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications. Small. 2012;8:2297–326
29. Huang SH. Gold nanoparticle-based immunochromatographic test for identifcation of Staphylococcus aureus from clinical specimens. Clin. Chim. Acta. 2006;373:139–43.
30. Huang YF, Wang YF, Yan XP. Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ. Sci. Technol. 2010;44:7908– 13.
31. Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin. Chem. 2007;53:2002–9.
32. Kaittanis C, Naser SA, Perez JM. One-step, nanoparticlemediated bacterial detection with magnetic relaxation. Nano Lett. 2007;7:380–3.
33. Kaittanis C, Nath S, Perez JM. Rapid nanoparticlemediated monitoring of bacterial metabolic activity and assessment of antimicrobial susceptibility in blood with magnetic relaxation. PLoS One. 2008;3:e3253.
34. Kaittanis C, Santra S, Perez JM. Emerging nanotechnologybased strategies for the identifcation of microbial pathogenesis. Adv. Drug Deliv. Rev. 2010;62:408–23.
35. Kalpana Sastry R, Anshul S, Rao NH. Nanotechnology in food processing sector-An assessment of emerging trends. J. Food Sci. Technol. 2013;50:831–41.
36. Karimi Z, Karimi L, Shokrollahi H. Nano-magnetic particles used in biomedicine: core and coating materials. Mater. Sci. Eng. C. Mater. Biol. Appl. 2013;33:2465–75.
37. Kim BYS, Rutka JT, Chan WCW. Nanomedicine. N. Engl. J. Med. 2010;363:2434–43.
38. Kim G, Moon J-H, Moh C-Y, Lim J. A microfluidic nanobiosensor for the detection of pathogenic Salmonella. Biosens. Bioelectron. 2015;67:243–7.
39. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR.Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008;27:1825.
40. Koedrith P, Tasiphu T, Weon J-I, Boonprasert R, Tuitemwong K, Tuitemwong P. Recent trends in rapid environmental monitoring of pathogens and toxicants: potential of nanoparticle-based biosensor and applications. ScientifcWorldJournal. 2015;2015:510982.
41. Koh I, Josephson L. Magnetic nanoparticle sensors. Sensors (Basel). 2009;9:8130–45.
42. Law JW-F, Ab Mutalib N-S, Chan K-G, Lee L-H. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front. Microbiol. 2014;5:770.
43. Lee H, Yoon T-J, Weissleder R. Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-flter system. Angew. Chem. Int. Ed. Engl. 2009; 48:5657–60.
44. Lee J, Mahendra S, Alvarez PJJ. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 2010;4:3580–90.
45. Lee N, Kwon KY, Oh SK, Chang H-J, Chun HS, Choi S-W. A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food. Foodborne Pathog. Dis. 2014;11:574– 80.
46. Levitt MH. Spin Dynamics: Basics of Nuclear Magnetic Resonance, 2nd Edition - Malcolm H. Levitt. Wiley. 2008;740.
47. Liandris E, Gazouli M, Andreadou M, Sechi LA, Rosu V, Ikonomopoulos J. Detection of pathogenic mycobacteria based on functionalized quantum dots coupled with immunomagnetic separation. PLoS One. 2011;6:e20026.
48. Liao JY, Song Y, Liu Y. A new trend to determine biochemical parameters by quantitative FRET assays. Acta Pharm. Sinic. 2015;36:1408-15.
49. LIU R, MUNRO S, NGUYEN T, SIUDA T, SUCIU D, BIZAK M,SLOTA M, FUJI HS, DANLEY D, McSHEA A. Integrated Microfluidic CustomArray Device for Bacterial Genotyping and Identifcation. J. Assoc. Lab. Autom. 2006;11:360–367.
50. Liu WT. Nanoparticles and their biological and environmental applications. J. Biosci. Bioeng. 2006;102:1–7.
51. Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006;22:32–41.
52. Maalouf R, Hassen WM, Fournier-Wirth C, Coste J, Jaffrezic-Renault N. Comparison of two innovatives approaches for bacterial detection: paramagnetic nanoparticles and self-assembled multilayer processes. Microchim. Acta 2008;163:157–161.
53. Magnuson BA, Jonaitis TS, Card JW. A brief review of the occurrence, use, and safety of food-related nanomaterials. J. Food Sci. 2011;76:R126–33.
54. Mairhofer J, Roppert K, Ertl P. Microfluidic systems for pathogen sensing: a review. Sensors (Basel). 2009;9:4804– 23.
55. Mandal PK, Biswas AK, Choi K PU. Methods for Rapid Detection of Foodborne Pathogens: An Overview. Amer j Food. technol. 2011;87–102.
56. Martirosyan A, Schneider Y-J. Engineered nanomaterials in food: implications for food safety and consumer health. Int. J. Environ. Res. Public Health.2014;11:5720–50.
57. Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, Castranova V, Shvedova AA. Oxidative stress and inflammatory response in dermal toxicity of singlewalled carbon nanotubes. Toxicology. 2009;257:161–71.
58. Oberdörster G. Pulmonary effects of inhaled ultrafne particles. Int. Arch. Occup. Environ. Health. 2001;74:1–8.
59. Oh WK, Jeong YS, Song J, Jang J. Fluorescent europiummodifed polymer nanoparticles for rapid and sensitive anthrax sensors. Biosens. Bioelectron. 2011;29:172–7.
60. Oliver SP, Jayarao BM, Almeida RA. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog. Dis. 2005;2:115–29.
61. Omurtag I, Paulsen P, Hilbert F, Smulders FJM.Te risk of transfer of foodborne bacterial hazards in Turkey through the consumption of meat; risk ranking of muscle foods with the potential to transfer Campylobacter spp. Food Secur. 2013;5:117–27.
62. Pankhurst QA, Connolly J, Jones SK, Dobson J. Phys. D. Appl. Phys. 2003;36:R167–R181.
63. Park HS, Ahn J, Kwak HS. Effect of nano-calciumenriched milk on calcium metabolism in ovariectomized rats. J. Med. Food. 2008;11:454–9.
64. Peng F, Wang Z, Zhang S, Wu R, Hu S, Li Z, Wang X, Bi D. Development of an immunochromatographic strip for rapid detection of H9 subtype avian influenza viruses. Clin. Vaccine Immunol. 2008;15:569–74.
65. Petryayeva E, Algar WR, Medintz IL. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectrosc. 2013;67:215–52.
66. Ray PC, Darbha GK, Ray A, Walker J, Hardy W.Gold Nanoparticle Based FRET for DNA Detection. Plasmonics. 2007;2:173–83.
67. Rosec JP, Causse V, Cruz B, Rauzier J, Carnat L. Te international standard ISO/TS 21872-1 to study the occurence of total and pathogenic Vibrio parahaemolyticus and Vibrio cholerae in seafood: ITS improvement by use of a chromogenic medium and PCR. Int. J. Food Microbiol. 2012;157:189–94.
68. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem. Rev. 2005;105:1547–62.
69. Ruedas-Rama MJ, Walters JD, Orte A, Hall EAH. Fluorescent nanoparticles for intracellular sensing: a review. Anal. Chim. Acta. 2012;751:1–23.
70. Shah M, Badwaik V, Kherde Y, Waghwani HK, Modi T, Aguilar ZP, Rodgers H, Hamilton W, Marutharaj T, Webb C, Lawrenz MB, Dakshinamurthy R. Gold nanoparticles: various methods of synthesis and antibacterial applications. Front. Biosci. Landmark Ed. 2014;19:1320– 44.
71. Shirahata N. Colloidal Si nanocrystals: a controlled organic-inorganic interface and its implications of color-tuning and chemical design toward sophisticated architectures. Phys. Chem. Chem. Phys. 2011;13:7284– 94.
72. Shokrollahi H. Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Mater. Sci. Eng. C. Mater. Biol. Appl. 2013;33:2476–87.
73. Smolkova B, El Yamani N, Collins AR, Gutleb AC, Dusinska M. Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chem. Toxicol. 2015;77:64–73.
74. Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008;37:1896–908.
75. Syed MA, Bokhari SHA. Gold Nanoparticle Based Microbial Detection and Identifcation. J. Biomed. Nanotechnol. 2011;7:229–37.
76. Syed MA. Advances in nanodiagnostic techniques for microbial agents. Biosens. Bioelectron. 2014;51:391–400.
77. Tallury P, Malhotra A, Byrne LM, Santra S. Nanobioimaging and sensing of infectious diseases. Adv. Drug Deliv. Rev. 2010;62:424–37.
78. Tartaj P, Morales M a del P, Veintemillas-Verdaguer S, Gonz lez-Carre o T, Serna CJ. Te preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys. 2003;36:R182–R197.
79. Takur MS, Ragavan K V. Biosensors in food processing. J. Food Sci. Technol. 2013;50:625–41.
80. Tuitemwong P, Songvorawit N, Tuitemwong K. Facile and Sensitive Epifluorescent Silica Nanoparticles for the Rapid Screening of EHEC. J. Nanomater. 2013; 2013:1–8.
81. Varshney M, Li Y. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens. Bioelectron. 2007;22:2408–14.
82. Vashist SK. Nanomaterials-Based Health Care and Bioanalytical Applications: Trend and Prospects. Nanomater. Mol. Nanotechnol. 2013;2:2.
83. Wang L, Ma W, Xu L, Chen W, Zhu Y, Xu C, Kotov NA. Nanoparticle-based environmental sensors. Mater. Sci. Eng. R Reports 2010;70:265–74.
84. Wang L, Zhao W, O’Donoghue MB, Tan W. Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjug. Chem. 2007;18:297–301.
85. Wingstrand A, Neimann J, Engberg J, Nielsen EM, Gerner-Smidt P, Wegener HC, Mølbak K. Fresh chicken as main risk factor for campylobacteriosis. Denmark. Emerg. Infect. Dis. 2006;12:280–5.
86. Xu C, Sun S. New forms of superparamagnetic nanoparticles for biomedical applications. Adv. Drug Deliv. Rev. 2013;65:732–43.
87. Yeh YC, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4:1871–80.
88. Yildirimer L, Tanh NTK, Loizidou M, Seifalian AM. Toxicology and clinical potential of nanoparticles. Nano Today. 2011;6:585–607.
89. Yu KO, Grabinski CM, Schrand AM, Murdock RC, Wang W, Gu B, Schlager JJ, HussainSM. Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J. Nanoparticle Res. 2008;11:15–24.
90. Zhang G. Foodborne Pathogenic Bacteria Detection: An Evaluation of Current and Developing Methods. Te Meducator 2013.1.
91. Zhang Y. Electrochemical DNA Biosensors Based on Gold Nanoparticles / Cysteamine / Poly(glutamic acid) Modifed Electrode. Am. J. Biomed. Sci. 2007;115.
92. Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2004;101:15027–32.
93. Zhao X, Lin C-W, Wang J, Oh DH. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 2014;24:297–312.

logo dg open        cm stacked 064 plain