De Gruyter Open

From December 2015 Agricultura journal will be published in partnership with De Gruyter Open (degruyteropen.com), the world's second largest publisher of Open Access academic content, and part of the De Gruyter group which has over 260 years of publishing history. De Gruyter Open closely cooperates with the majority of abstracting and indexing services, universities and libraries, providing a wide availability of journal's content and increasing its visibility. Agricultura's full-text articles will be found also at the new address on the De Gruyter Open's platform in following weeks.


Publishing support

Publishing of the journal Agricultura is financially supported by Slovenian Research Agency.

Izdajanje revije Agricultura je finančno podprto s strani Javne agencije za raziskovalno dejavnost Republike Slovenije.


Our Profile

The journal AGRICULTURA (A) publishes scientific works from the following fields: animal science, plant production, farm mechanisation, land management, agricultural economics, ecology, biotechnology, microbiology
ISSN 1581-5439
Denis STAJNKO and Miran LAKOTA
pp. 6-11

A new approach for counting apple fruits, measuring fruit’s diameter and estimating the current yield under flash lighting conditions in the fruit tree plantation was developed and tested in the 2002 and 2003. During the vegetation images of ten trees were captured five times in both years by applying CCD camera. A close correlation was established between manually counted number of fruits per tree and the estimated number of fruits (r=0.70 to 0.88). However, relatively lower coefficient was estimated for measuring the fruit’s diameter (r=0.33 to 0.88). The established correlation coefficients for the average yield per tree was also increasing with the ripening of fruit significantly (r=0.28 to 0.87), therefore the developed algorithm promises a good possibility for forecasting the yield at harvesting on the basis of June and July samples.

Key words: image analysis, apple, Malus domestica, yield, fruit, diameter


Slovenian:

Uporaba analize slike za spremljanje rasti in razvoja jabolkih "Malus domestica Borkh" v rastni sezoni

Predstavljen je nov pristop za štetje plodov jabolk, merjenje premera plodov in oceno trenutnega pridelka. Fotografije sadnega drevja so bile zajete podnevi z bliskavico v letih 2002 in 2003. V času vegetacije se je slike desetih dreves zajemalo petkrat v obeh letih s pomočjo CCD kamero. Ugotovljena je bila tesna povezava med ročno preštetimi plodovi na drevesu in računalniško ocenjenim številom plodov (r = 0,70-0,88). Vendar je bil relativno manjši koeficient ocenjen za merjenje premera plodov (r = 0,33-0,88). Ocenjen korelacijski koeficienti za povprečni pridelek na drevo se je značilno večal dozorevanjem plodov (r = 0,28-0,87), zato razviti algoritem obljublja dobro možnost za napovedovanje pridelka ob obiranju na podlagi junijskega in julijskega vzorčenja.

Ključne besede: analiza slike / jablana / pridelek / napoved / plod / premer


CITATED REFERENCES :

1. Grand D’Esnon A, Rabatel G, Pellenc R. Magali: a self-propelled robot to pick apples, ASAE paper No. 87-1037, 1987.

2. Jimenez AR, Jain AK, Ceres R, Pons JL. Automatic fruit recognition: a surveyand new results using Range/Attenuation images, Pattern Recognition 1999;32:1719- 36.

3. Juste F, Sevilla F. Citrus: A European project to study the robotic harvesting of Oranges, in: Proc. 3rd Int.Symp. Fruit, Nut and Vegetable Harvesting Mechanization, Denmark, Sweden, Norway, 1991;331-38.

4. Kataoka T, Bulanon DM, Hiroma T, Ota Y. Performance of Robotic Hand for Apple Harvesting, ASAE Paper No.993003, 1999.

5. Kondo NK, Hisaeda A, Monta M. Development of Strawberry Harvesting. Robotic Hand, ASAE Paper No.983117, 1998.

6. Lambrechts G. Apple EU 2001 Forecast 2001, Prognosfruit 2001, http://cmlag.fgov.be/dg2/fr/Communications/prognos-algemeen.pdf., 2001.

7. Perez AJ, Lopez F, Benlloch JV, Christensen S. Colour and shape analysis techniques for weed detection in cereal feels. Comput. Electron. Agric. 2000; 25:197-212.

8. Peterson DL, Anger WC, Bennedsen BS, Wolford SD.. A system approach to robotic bulk harvesting of apples. ASAE Paper No. 99-1075, 1999.

9. Ramos K, Lieberz SM. Prognosfruit 2003 – European Crop Forecast Convention, 7 s., http://www.fas.usda.gov/gainfiles/200308/14598 5760.doc. 2003.

10. Stajnko D, Lakota M. Using image processing and analysis techniques for counting apple fruits in the orchard, Horticultural Science (Prague) 2001; 28(3): 95-99.

11. Stajnko D, Lakota M, Ho~evar M. Estimation of number and diameter of apple fruits in an orchard during the growing season by thermal imaging. Comput. Electron. Agric. 2004;42:31-42.

12. Steward BL, Tian LF. Real-Time Machine Vision Weed-Sensing. ASAE Paper No. 98-3033, 1998.

13. Tian L, Slaughter DC, Norris RF. Outdoor field machine vision identification of tomato seedlings for automated weed control. Transactions of ASAE 1997;40:(6):1761-68.

14. Welte HF. Forecasting harvest fruit size during the growing season. Acta Horticulturae 1990;276:275-82.

15. Winter, F. Modelling the biological and economic development of an apple orchard. Acta Horticulturae 1986;160:353-60.

logo dg open        cm stacked 064 plain