De Gruyter Open

From December 2015 Agricultura journal will be published in partnership with De Gruyter Open (, the world's second largest publisher of Open Access academic content, and part of the De Gruyter group which has over 260 years of publishing history. De Gruyter Open closely cooperates with the majority of abstracting and indexing services, universities and libraries, providing a wide availability of journal's content and increasing its visibility. Agricultura's full-text articles will be found also at the new address on the De Gruyter Open's platform in following weeks.

Publishing support

Publishing of the journal Agricultura is financially supported by Slovenian Research Agency.

Izdajanje revije Agricultura je finančno podprto s strani Javne agencije za raziskovalno dejavnost Republike Slovenije.

Our Profile

The journal AGRICULTURA (A) publishes scientific works from the following fields: animal science, plant production, farm mechanisation, land management, agricultural economics, ecology, biotechnology, microbiology
ISSN 1581-5439

Manoharan Melvin JOE, Palanivel Karpagavinayaga SIVAKUMAAR
pp. 71-77

Azospirillum brasilense AZP-18 was co-aggregated with other Plant Growth Promoting Rhizobacteria (PGPR), such as Azotobacter chroococcum MTCC-2805, Azorhizobium caulinodans ORS-571, Bacillus megatherium MTCC-3353 and Pseudomonas fluorescens MTCC-4828. These different combinations of Azospirillum coaggregates were studied for their long-term survival efficiency in vermiculite. Among the different combinations the combination of Azospirillum with Azotobacter showed the highest survival efficiency. The different combinations of Azospirillum co-aggregates were found to have a positive influence on the total bacterial and
Azospirillum population on the rhizosphere of sunflower. It has been found that the combination of Azospirillum brasilense with Azotobacter chroococcum to be superior in positively augmenting the growth (plant height, capitullum diameter and dry matter production) and yield (no of seeds capitullum-1, stalk yield and seed yield) parameters of sunflower crop.

Key words: Azospirillum brasilense, Co-aggregation, Plant Growth Promoting Rhizobacteria, sunflower


Dolgoročna sposobnost preživetja Azospirillum ko-agregatov: vpliv bio-inokulacije na rast in pridelek sončnic

Azospirillum brasilense AZP-18 je bil proučevan z drugo za rast rastlin spodbujajočo bakterijo Rhizobacteria (PGPR), kot tudi Azotobacter chroococcum MTCC-2805, Azorhizobium caulinodans ORS-571, Bacillus megatherium MTCC-3353 in Pseudomonas fluorescens MTCC-4828. Različne kombinacije Azospirillum agregatov so preučevali v povezavi z njihovo dolgoročno učinkovitost preživetja v vermikulitu. Med različnimi kombinacijami je imela kombinacija Azospirillum s Azotobacter največjo učinkovitost preživetja. Za različne kombinacije Azospirillum in agregatov je bilo ugotovljeno, da imajo pozitiven vpliv na celotne bakterijske in Azospirillum populacije na rizosfero sončnic. Ugotovljeno je bilo, da je to kombinacija Azospirillum brasilense z Azotobacter chroococcum najboljša saj pozitivno povečuje rast (višina rastlin, premer capituluma in proizvodnjo suhe snovi) in donos (brez semen capitulum-1, pridelek stebla in semena) parametrov sončničnega pridelka.

Ključne besede: Azospirillum brasilense; ko-agregati; promotor rasti rastlin Rhizobacteria; sončnica


1. Abdul-Baki AA, Anderson JD. Vigour determination in soybean and multiple criteria. Crop. Sci. 1973;13:630-33.

2. Acharya A, Sharma CR, Dev SP. Effect of Azospirillum inoculation on production of rice crop in Alfisols of Himachal Pradesh. Indian J. Hill Farming 1999;12:42-6.

3. Alagawadi AR, Gaur AC. Inoculation of Azospirillum brasilense and phosphate-solubilizing bacteria on yield of sorghum [Sorghum bicolor (L.) Moench] in dry land.
Trop. Agric. 1992;69:347-50.

4. Allen SE. Chemical Analysis of Ecological Materials. Blackwell Scientific Publications, Oxford. 1974; pp. 81-94.

5. Bahat-Samet E, Castro-Sowinski S, Okon Y. Arabinose content of exocellular polysaccharides plays a role in cell aggregation of Azospirillum brasilense. FEMS. Microbiol. Lett. 2004;237:195-203.

6. Bardiya MC, Gaur AC. Isolation and screening of microorganisms dissolving low grade rockphosphate. Folia Microbiol. 1974;19:386-9.

7. Bashan Y, Levanony H “Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can. J. Microbiol. 1990;36:591-608.

8. Bashan Y, Holguin G. Azospirillum–plant relationships: environmental and physiological advances. Can. J. Microbiol. 1997;43:103-21.

9. Bashan Y, Holguin G. Proposal for the division of plant growth promoting rhizobacteria into two classifications: Biocontrol-PGPB and PGPB. Soil Biol. Biochem.

10. Bashan. Y. Interactions of Azospirillum spp. in soils: a review. Biol. Fertil. Soils 1999;29:246-56.

11. Blaha CAG, Shrank IS. An Azospirillum brasilense tn5 mutant with modified stress response and impaired in flocculation. Antonie Leeuweenhook 2003;83:35-43.

12. Cochran WG. Estimation of bacterial densities by means of “Most Probable Number Method”. Biometric. 1950;6:105-16.

13. de-Freitas JR. Yield and N assimilation of winter wheat(Triticum aestivum L., var Norstar) inoculated with rhizobacteria. Pedobiologia 2000;44:97-104.

14. Dreyfus BL, Garcia L, Gillis M. Characterization of Azorhizobium caulinodans gen. nov., Sp. Nov., A stem nodulating nitrogen fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Bact. 1988;38:89-98.

15. Elshanshoury AR. Interactions of Azotobacter chroococcum, Azospirillum brasilense and Streptomyces mutabilis, in relation to their effect on wheat development. J. Agron. Crop. Sci. 1995;175:119-27.

16. Felici C, Vettori L, Giraldi E, Forino LMC, Toffanin A, Tagliasacchi AM, Nuti, M. Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: Effects on plant growth and rhizosphere microbial community. Appl. Soil Ecol. 2008;40(2):260-70.

17. Gibbons RJ, Nygaard M. Interbacterial aggregation of plaque bacteria. Arch. Oral. Biol. 1970;15:1317-400.

18. Gomez KA, Gomez AA. Statistical procedures for agricultural research.1984; John Wiley and Sons, New York, pp. 150-4.

19. Grimaudo NJ, Nesbitt WE. Co-aggregation of Candida albicans with oral Fusobacterium sp. Oral Microbiol Immunol. 1997;12:168-73.

20. Hegazi NA, Saleh H. Possible contribution of Azospirillum sp to the nutritional status of wheat plants grown in sandy soils of Gassim- Saudi Arabia. In: Azospirillum III Genetics, Physiology and Ecology. W. Klingmuller (Ed.), Springer-Verlag, Berlin, 1985, pp. 186-225.

21. Hegazi D, Fayez M, Amin G, Hamza MA, Abbas M, Youseef H, Monib M. Diazotrophs associated with nonlegumes grown in sandy soils. In Development in plant
and soil sciences Vol. 79. Proceedings of the 7th International Symposium of on Nitrogen fixation with non-legumes. 16-21 October 1996, Faisalabad, Pakistan. Malik KA, Mirza M, Ladha JK (eds). Kluwer Acadamic Publishers, Dordrecht, 1998, pp. 209-22.

22. Humphries EC. Mineral composition and ash analysis. In: Modern methods of plant analysis, Peach K, Tracey MV (eds), Springer-Verlag, Berlin, 1996, Vol. 1, pp. 88-90, 468-502.

23. ISTA (International Seed Testing Association). International rules for seed testing. Seed Sci. Technol. 1976;4:52-70.

24. Joe MM, Sivakumaar PK. Growth and N2 fixation in Sesbania rostrata by H2O2 pretreated Azorhizobium caulinodans and its effect as green manure on lowland rice. Agricultura 2008;6:47-52.

25. Joe MM, Jaleel CA, Sivakumaar PK, Chang-xing Z, Karthikeyan B. Co-aggregation in Azospirillum brasilense MTCC-125 with other PGPR strains: Effect of physical and chemical factors and stress endurance ability. J. Tai. Inst. Chem. Eng. 2009;40:491-9.

26. Khammas KM, Kaiser P. Pectin decomposition and associated nitrogen fixation by mixed cultures of Azospirillum and Bacillus species. Can. J. Microbiol. 1992;38:794-7.

27. Kolenbrander PE, Ganeshkumar N, Cassels FJ, Hughes CV. Coaggregation: specific adherence among human oral plaque bacteria. FASEB J. 1993;7:406-13.

28. Leeman M. Ranpelt JA, Benordon K, Hemsbroek M Backer HM Schippers B. Induction of systemic resistance against Fussarium wilt or radish by lipopolysaccharides of Pseudomonos fluorescens. Phytopathol 1995;85:1021-7.

29. Meyer GD, Hofte M. Salicyclic acid produced by rhizobacterium Pseudomonas aeruginosa induced resistance against leaf infection by Botrytis cinerea on bean. Phytopathol. 1997;87:556-93.

30. Neyra CA, Arunakumari A, Olybayi O. Flocculated microbial inoculants for delivery of agriculturally beneficial microorganisms. 1997, U.S Patent No. 454317.

31. Nieuwenhove CV, Holm LV, Kulasooriya SA, Vlassak K. Establishment of Azorhizobium caulinodans in the rhizosphere of wetland rice (Oryza sativa L.) Biol. Fertil. Soil 2000;31:143-9.

32. Öğüt M, Akdağ C, Sakin ODMA. Single and double inoculation with Azospirillum/Trichoderma: the effects on dry bean and wheat. Biol. Fertil. Soils 2005;41:262-72.

33. Okon Y. Azospirillum as a potential inoculant for agriculture Trends Biotechnol. 1985;3:223-28.

34. Okon Y, Laberandera-Gonzalez CA. Agronomic application of Azospirillum: An evaluation of 20 years worldwide field inoculation. Soil. Biol. Biochem. 1994;26:1591-601.

35. Saikia N, Brezbaruah B. Iron-dependent plant pathogen inhibition through Azotobacter RRLJ 203 isolated from iron-rich acid soils. Ind. J. Exptl. Biol. 1995;33:571-5.

36. Sambrook J, Fritisch EF, Manialis T. Molecular cloning; a laboratory manual. ; 2nd ed. Cold Spring Harbor, New York, 1989, pp. 73-9.

37. Selvakumari G, Baskar M, Jayanthi D, Mathan KK. Effect of irrigation of fly ash with fertilizers and organic manures on nutrient availability, yield and nutrient uptake of rice in Alfisols. J. Ind. Soc. Soil. Sci. 2000;48:268-78.

38. Sharma SK. Effect of biofertilizers on cabbage production. Proc of Third Agrl Sci Congress. National. Acad. Agrl. Sci. PAU, Ludhiana, 1997, Vol. II, pp, 50.

39. Shuler ML, Kargi F. Bioprocess engineering basic concepts. Prentice Hall of India, New Delhi, 2006, pp. 475-512.

40. Sivakumaar PK, Joe MM. Rhizobacteria mediated induced resistance in rice (Oryzae sativa) against Pyricularia oryzae. Ind. J. App. Microbiol. 2007;8(1):1-4.

41. Sivakumaar PK, Joe MM. Development of co-aggregated cells as bioinoculants using plant seed powders- A novel delivery system for rice grown under lowland condition. Agric. Conspec. Sci. 2008;73(4):1-5.

42. Somasegaran P, Hoben HJ. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology. NIFTAL Project, University of Hawaii, Paia, 1994, 450 pp.

43. Somers E, Vanderleyden J, Srinivasan M. Rhizosphere bacterial signalling: a love parade beneath our feet. Crit. Rev. Microbiol. 2004;30:205-40.

44. Sundara-Rao WVB, Sinha MK. Phosphate dissolving organisms in soil and rhizosphere. Indian J. Agric. Sci.1963;33:272-8.

45. Tchan Y. Family II. Azotobacteriaceae. In Bergey’s Manual of Systematic Bacteriology (eds Krieg, N. R. and Holt, J. G.), Williams and Wilkins, Baltimore, 1984, Vol. 1, pp. 219.

46. Tilak KVBR, Ranganayki N, Pal KK, De R. Saxena AK. Shekhar NC, Shilpi M, Tripathi AK, Johri BN. Diversity of plant growth and soil health supporting bacteria. Curr. Sci. 2005;89(1):136-50.

47. Yanni YG, Óoizk RY, Cerich V, Squerlini A, Ninkle K, Philip-Holling S, Orgambide G, De Brumin F, Buckley. D, Schmidt TM, Mateos PF, Kdue JK, Dazzo F. Natural
endophytic association between Rhizobium leguminosorum bv. trifoli and rice roots assessment of its potential to promote rice growth. Plant Soil 1997;194:99-114.

48. Yoshida S, Forno D, Cock J, Gomez K. Analysis of total nitrogen(organic nitrogen) in plant tissues. In: Laboratory manual for physiological studies of rice. International Rice Research Institute, Losbanos, 1972 , pp. 124-8.

logo dg open        cm stacked 064 plain